14 / 2022-09-09 09:22:12
sEFER: sEMG-based Facial Expression Recognition Exploiting Bi-LSTM and Attention Mechanism
全文待审
姜那 / 首都师范大学
孙明锐 / 首都师范大学
谭小慧 / 首都师范大学
庄美琪 / 首都师范大学
Facial expression recognition (FER) based on surface electromyography (sEMG) is a promising task for human emotion understanding. It is challenging due to the nonstationary nature of sEMG in real-life operation. To solve the problem, this paper proposes a sEMG-based FER method named sEFER, which can improve recognition accuracy by integrating bi-directional long short-term memory (Bi-LSTM) network and multiple head attention mechanism. To achieve better emotion recognition performance, the architecture of our method has two distinguish characteristics: First, multi-head mechanism solves the multi-channel data collection of our data and make the classification more efficiently. Second, the attention mechanism helps us focus more purposefully on certain channels during the data processing to improve recognition accuracy. We evaluate the proposed method on the data set which is constructed by obtaining high-fidelity sEMG signals through novel epidermal electrodes. Our method can achieve high average accuracy for emotion recognition. Qualitative and quantitative experiments illustrate that our method is superior to the performance of the classical facial expression classification methods and has strong robustness.
重要日期
  • 会议日期

    11月18日

    2022

    11月20日

    2022

  • 10月25日 2022

    初稿截稿日期

  • 11月20日 2022

    终稿截稿日期

  • 11月21日 2022

    注册截止日期

主办单位
中国仿真学会
中国图象图形学会
中国计算机学会
承办单位
北京航空航天大学云南研究院
云南大学
云南艺术学院
昆明理工大学
协办单位
虚拟现实技术与系统国家重点实验室(北京航空航天大学)
北京市混合现实与新型显示工程技术研究中心(北京理工大学)
计算机辅助设计与图形学国家重点实验室(浙江大学)
文旅部闽台非遗文化数字化保护与智能处理文化和旅游部重点实验室(厦门大学)
云南省人工智能重点实验室(昆明理工大学)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询