127 / 2022-10-21 10:17:32
Dynamic Gesture Recognition Based on Temporal Shift Module
全文待审
LiuZhiqi / Changchun University of Science and Technology
LiHua / Changchun University of Science and Technology
Dynamic gesture recognition is a very important interaction method in human-computer interaction. For the current research, multi-modal data and three-dimensional convolutional neural network are often used for training. Although the recognition accuracy is high and robustness is good, the amount of parameters is large and high computational cost.To solve the problem, a dynamic gesture recognition method based on Temporal Shift Module (TSM) is proposed on the basis of two-dimensional convolutional neural network. This method uses PyConvResNet-50 as the backbone network, adds the TSM module for information exchange in the time dimension, embeds the motion excitation module (ME) into the TSM to enhance short-term temporal modeling, and finally uses 2D-FCN for spatiotemporal feature fusion classification. The experimental results show that the recognition accuracy of the model on the large-scale gesture dataset Jester is 96.49%, which is comparable to that of the three-dimensional convolutional neural network, but the calculation amount is reduced by 63% as well. This method is suitable for the field of gesture recognition that requires high real-time performance.
重要日期
  • 会议日期

    11月18日

    2022

    11月20日

    2022

  • 10月25日 2022

    初稿截稿日期

  • 11月20日 2022

    终稿截稿日期

  • 11月21日 2022

    注册截止日期

主办单位
中国仿真学会
中国图象图形学会
中国计算机学会
承办单位
北京航空航天大学云南研究院
云南大学
云南艺术学院
昆明理工大学
协办单位
虚拟现实技术与系统国家重点实验室(北京航空航天大学)
北京市混合现实与新型显示工程技术研究中心(北京理工大学)
计算机辅助设计与图形学国家重点实验室(浙江大学)
文旅部闽台非遗文化数字化保护与智能处理文化和旅游部重点实验室(厦门大学)
云南省人工智能重点实验室(昆明理工大学)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询