126 / 2022-10-21 09:31:59
Gesture Recognition Fusion Two-Stream 3D CNN and FPN
全文待审
WangYingbo / Changchun University of Science and Technology
LiHua / Changchun University of Science and Technology
In the field of VR/AR human-computer interaction, natural and simple dynamic gesture recognition research has attracted much attention. In order to improve the accuracy of dynamic gesture recognition in human-computer interaction, this paper proposes a dynamic gesture recognition method FPN-3DResNeXt, which combines two-stream three-dimensional convolutional neural network (3DResNeXt) and feature pyramid (FPN). This method improves the structure of the 3DResNeXt network model, adds feature pyramid and attention channel, optimizes the model parameters, and then improves the recognition accuracy; in order to improve the convergence speed and stability of the model, it is proposed to add batch normalization (BN) Further optimization of the network reduces the training time. The experimental results show that the dynamic gesture recognition rate of the method proposed in this paper is 95.30%, which is 2.1% higher than that of the gesture recognition method based on 3DResNeXt by comparing with various 3D convolution methods on the EgoGesture dataset, and it has better stability.

 
重要日期
  • 会议日期

    11月18日

    2022

    11月20日

    2022

  • 10月25日 2022

    初稿截稿日期

  • 11月20日 2022

    终稿截稿日期

  • 11月21日 2022

    注册截止日期

主办单位
中国仿真学会
中国图象图形学会
中国计算机学会
承办单位
北京航空航天大学云南研究院
云南大学
云南艺术学院
昆明理工大学
协办单位
虚拟现实技术与系统国家重点实验室(北京航空航天大学)
北京市混合现实与新型显示工程技术研究中心(北京理工大学)
计算机辅助设计与图形学国家重点实验室(浙江大学)
文旅部闽台非遗文化数字化保护与智能处理文化和旅游部重点实验室(厦门大学)
云南省人工智能重点实验室(昆明理工大学)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询