125 / 2022-10-20 16:05:36
A single-stage robust face detector based on multi-scale feature fusion
全文待审
LiHua / Changchun University of Science and Technology
陈雨杰 / 长春理工大学
杨杨 / 长春理工大学
赵领娣 / 长春理工大学
Face detection is an important research content in the field of computer vision. With the development of deep learning network model, traditional face detection has achieved good accuracy. However, due to the influence of occlusion, illumination and scale change, the research of robust face detection is still a challenging task. In this paper, a single-stage robust face detector based on multi-scale feature fusion is proposed, which combines the advantages of multi-task learning to locate the pixelated faces of people of various scales, thus reducing the influence of environment and size factors and improving the detection performance. In the training process, RegNet+ is used as the backbone network, and an adaptive parallel sampling method of hole convolution is adopted, which can realize the parallel sampling of ASPP hole convolution and FPN pyramid, and has better robustness to face detection in special environment. A large number of experimental results show that the accuracy of our face detector can reach 95.592% on WIDER FACE test set, which is about 1% higher than the average accuracy of the existing method Tinaface.

 
重要日期
  • 会议日期

    11月18日

    2022

    11月20日

    2022

  • 10月25日 2022

    初稿截稿日期

  • 11月20日 2022

    终稿截稿日期

  • 11月21日 2022

    注册截止日期

主办单位
中国仿真学会
中国图象图形学会
中国计算机学会
承办单位
北京航空航天大学云南研究院
云南大学
云南艺术学院
昆明理工大学
协办单位
虚拟现实技术与系统国家重点实验室(北京航空航天大学)
北京市混合现实与新型显示工程技术研究中心(北京理工大学)
计算机辅助设计与图形学国家重点实验室(浙江大学)
文旅部闽台非遗文化数字化保护与智能处理文化和旅游部重点实验室(厦门大学)
云南省人工智能重点实验室(昆明理工大学)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询